

Andreas Frick

S. Sell, J. Stehly, D. Kipp, B. Cook, M. Greco, A. Zimmer, T. Kulkarni, E. Skulsky, M. Spaulding Jet Propulsion Laboratory

California Institute of Technology, Pasadena CA USA

14th International Planetary Probe Workshop The Hague, The Netherlands – June 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Pre-Decisional Information -- For Planning and Discussion Purposes Only.

Lander Mission Concept - Baseline

• 3-4 Gbit data return

• 5 samples

• ~45 kWh primary battery

• 20+ days surface mission

· Relay communications through

Carrier or Europa Clipper (backup)

Flight System Concept Composition & Nomenclature

Notable Concept Drivers & Features

- Synergies with the planned Europa Clipper mission
 - Leverage subsystem heritage whenever feasible
 - Landing site recon and back-up telecom asset
- Flagship / Class A style mission
 - Drives redundancy / fault-protection architecture
- No radioisotope power or heater units
 - Lander batteries complement radiation shielding
 - Battery chemistry can generate usable heat
- "Smart" Decent Stage for safe & accurate landing
 - SkyCrane minimizes landing site alteration
 - Uses terrain-relative navigation and hazard avoidance
- Planetary Protection approach for mostly conventional SI&T
 - DHMR bulk material / VHP surfaces before launch
 - Self-sterilization at EOM for select FS elements
- Launch on SLS Block 1b in 2025 (ΔVEGA Trajectory)

Carrier & Relay Stage Concept

Clipper Telecom Architecture

Redundant Frontier Radios (X-Band), 3m HGA

Clipper Avionics

Dual String RAD750-based in vault

Clipper GNC System Same RWA, SRU, RCS thrusters

DOV Bio-Barrier

Gimbaled Solar Array

≈60 m² w/Clipper cells & panel structure

Clipper-derived Bipropellant System

2x 60" Main Tanks + 4
Jettisonable Cruise Tanks

De-Orbit Vehicle Concept

Lander Concept (Surface Configuration)

Science Definition Team (SDT) Example Payload Accommodation Concept

Mass Allocations (Approximate)

Total Launch Mass Currently Allocated: ~16.4 t (incl. margins)

SLS 1B △VEGA Launch Capability: ~19.8 t

Conclusion

- The current flight system concept represents a feasible solution to the challenges of conducting in-situ science at Europa
 - Addresses radiation, thermal environment, large AV, terrain uncertainty, relay telecommunications, planetary protection, etc.
 - Maintains a high degree of functional separation, while leveraging common engineering developments, including from Europa Clipper and Mars 2020

Backup

6/13/17

Science Definition Team Recommendations:

A Connected Set of Goals & Objectives
Addressed with a Focused Model Payload

GC-MS Microscope Raman spectrometer **Context cameras** INORGANIC INDICATORS ORGANIC MOICATOR 5 samples Raman COMPOSITION CHARACTERIZE NON-ICE 7cc per sample spectrometer Raman 10 cm depth DYNAMIC spectrometer ASSESS HABITABILITY 10 monitoring days Microscope **GC-MS** GC-MS Context Context CHARACTERIZE DETERMINE cameras THE PROXIMITY cameras TO LIQUID WATER PHYSICAL Geophone Geophone

De-Orbit, Descent and Landing (DDL) Concept Overview and Timeline

